Sains Malaysiana 52(12)(2023): 3523-3532

http://doi.org/10.17576/jsm-2023-5212-14

 

Differentially Expressed Genes (DEGs) Analysis Indicating 6-Shogaol Anticancer Activity against HCT-116 Cells Performed Primarily by Affecting Genes in Common (shared-DEGs) of Apoptotic and p53 Signaling Pathways

(Analisis Pengekspresan Gen Berbeza (DEGs) Menunjukkan Aktiviti Antikanser 6-Shogaol terhadap Sel HCT-116 Dijalankan Terutamanya dengan Mempengaruhi Gen Bersama (shared-DEGs) Tapak Jalan Pengisyaratan Apoptotik dan p53)

 

ARYO TEDJO1,2,3, DIMAS R NOOR4, KUSMARDI2,4.5,6,*, NUR AYU RAMADANTI3 & AMELIA KASSIM7

 

1Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

2Drug Development Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

3Master’s Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, DKI Jakarta, Depok, Indonesia

4Human Cancer Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

5Department of Pathology Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

6Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, DKI Jakarta, Depok, Indonesia

7Faculty of Information Science and Technology, Multimedia University, 75450 Bukit Beruang, Melaka, Malaysia

 

Received: 8 March 2023/Accepted: 11 December 2023

 

Abstract

Ginger have strong anti-inflammatory and antioxidant properties that can inhibit growth and trigger apoptosis of colorectal cancer cells. Dried ginger containing the main bioactive compound 6-shogaol is widely used for practical reasons in storage. In this study, the mechanism of 6-shogaol apoptosis was tried to be explained by looking at the Differentially Expressed Genes (DEGs) changes in HCT-116 cells. The results of DEGs analysis on Gene Expression Omnibus (GEO) data which contained gene expression data for the HCT-116 cell group treated with 6-shogaol and the control group showed that there were 142 DEGs of the apoptotic pathway with 9 (nine) of them being share-DEGs of the apoptotic pathway with other pathways related to apoptosis such as MAPK signaling pathway, p53 signalling pathway, and protein processing in endoplasmic reticulum pathways. Based on the regulation of the 9 share-DEGs, it was also explained that the apoptotic activity of 6-shogaol mainly occurs through the p53 signalling pathway which involves up-regulation of BAX, BBC3, GADD45G, and TNFRSF10A.

 

Keywords: Apoptosis; Differentially Expressed Genes; HCT-116; p53 signaling pathway; 6-shogaol

 

Abstrak

Halia mempunyai sifat anti-radang yang kuat dan antioksidan yang boleh menghalang pertumbuhan serta mencetuskan apoptosis sel kanser kolorektal. Halia kering yang mengandungi sebatian bioaktif utama 6-shogaol digunakan secara meluas atas alasan praktikal dalam penyimpanan. Dalam kajian ini, mekanisme apoptosis 6-shogaol cuba diterangkan dengan melihat perubahan Pengekspresan Gen Berbeza (DEG) dalam sel HCT-116. Hasil analisis DEG pada data Pengekspresan Gen Serbaneka (GEO) yang mengandungi data pengekspresan gen bagi kumpulan sel HCT-116 yang dirawat dengan 6-shogaol dan kumpulan kawalan menunjukkan bahawa terdapat 142 DEG dalam tapak jalan apoptosis dengan 9 daripadanya adalah DEG bersama dalam tapak jalan apoptosis dengan tapak jalan lain yang berkaitan seperti tapak jalan pengisyaratan MAPK, tapak jalan pengisyaratan p53 serta tapak jalan pemprosesan protein dalam retikulum endoplasma. Berdasarkan pengawalan 9 DEG bersama itu juga diterangkan bahawa aktiviti apoptosis 6-shogaol utamanya berlaku melalui tapak jalan pengisyaratan p53 yang melibatkan peningkatan pengawalan atas BAX, BBC3, GADD45G dan TNFRSF10A.

 

Kata kunci: Apoptosis; HCT-116; Pengekspresan Gen Berbeza; tapak jalan pengisyaratan p53; 6-shogaol

 

REFERENCES

Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S. & Soboleva, A. 2012. NCBI GEO: Archive for functional genomics data sets - update. Nucleic Acids Research 41(Database Issue): D991-D995. https://doi.org/10.1093/nar/gks1193

Bawadood, A.S., Fahad, A.A., Ali, M.E. & Ahmed, M.A. 2021. Abstract 313: Synergistic interaction between gingerol, shogaol and paradol with platinum-based chemotherapeutic drugs against naïve and resistant breast cancer cells. Cancer Research 81(13_Supplement): 313. https://doi.org/10.1158/1538-7445.am2021-313

Bischoff-Kont, I. & Fürst, R. 2021. Benefits of ginger and its constituent 6-Shogaol in inhibiting inflammatory processes. Pharmaceuticals 14(6): 571. https://doi.org/10.3390/ph14060571

Chen, H., Fu, J., Chen, H., Hu, Y., Soroka, D.N., Prigge, J.R., Schmidt, E.E., Yan, F., Major, M.B., Chen, X. & Sang, S. 2014. Ginger compound [6]-shogaol and its cysteine-conjugated metabolite (M2) activate Nrf2 in colon epithelial cells in vitro and in vivo. Chem Res Toxicol. 27(9): 1575-1585. doi: 10.1021/tx500211x

Citronberg, J., Bostick, R., Ahearn, T., Turgeon, D.K., Ruffin, M.T., Djuric, Z., Sen, A., Brenner, D.E. & Zick, S.M. 2013. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: Results from a pilot, randomized, and controlled trial. Cancer Prevention Research 6(4): 271-281. https://doi.org/10.1158/1940-6207.capr-12-0327

Clarke, P.A., Roe, T., Swabey, K., Hobbs, S.M., McAndrew, C., Tomlin, K., Westwood, I., Burke, R., van Montfort, R. & Workman, P. 2019. Dissecting mechanisms of resistance to targeted drug combination therapy in human colorectal cancer. Oncogene 38(25): 5076-5090. https://doi.org/10.1038/s41388-019-0780-z

De, S., Paul, S., Manna, A., Majumder, C., Pal, K., Casarcia, N., Mondal, A., Banerjee, S., Nelson, V.K., Ghosh, S., Hazra, J., Bhattacharjee, A., Mandal, S.C., Pal, M. & Bishayee, A. 2023. Phenolic phytochemicals for prevention and treatment of colorectal cancer: A critical evaluation of in vivo studies. Cancers 15(3): 993. https://doi.org/10.3390/cancers15030993

Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L., Zbontar, J., Zitnik, M. & Zupan, B. 2013. Orange: Data mining toolbox in python. Journal of Machine Learning Research 14: 2349-2353.

El-Sayed, W.M., Abdel-Rasol, M.A., El-Beih, N.M. & Yahya, S.S. 2022. The antitumor activity of ginger against colorectal cancer induced by dimethylhydrazinein rats. Anti-Cancer Agents in Medicinal Chemistry 22(8): 1601-1610. 

Goel, H.L. & Mercurio, A.M. 2013. VEGF targets the tumour cell. Nat. Rev. Cancer 13(12): 871-882. doi: 10.1038/nrc3627

Habib, S.H., Makpol, S., Abdul Hamid, N.A., Das, S., Ngah, W.Z. & Yusof, Y.A. 2008. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics 63(6): 807-813.

‌ Hu, S.M., Yao, X.H., Hao, Y.H., Pan, A.H. & Zhou, X.W. 2020. 8‑gingerol regulates colorectal cancer cell proliferation and migration through the EGFR/stat/erk pathway. International Journal of Oncology 56(1): 390-397. https://doi.org/10.3892/ijo.2019.4934

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. 2023. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51(D1): D587-D592. doi: 10.1093/nar/gkac963

Lee, S.H., Cekanova, M. & Baek, S.J. 2008.  Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol. Carcinog. 47: 197-208.

Li, T., Su, L., Lei, Y., Liu, X., Zhang, Y. & Liu, X. 2015. DDIT3 and KAT2A proteins regulate TNFRSF10A and TNFRSF10B expression in endoplasmic reticulum stress-mediated apoptosis in human lung cancer cells. J. Biol. Chem. 290(17): 11108-11118.

Liao, J., Wolfman, J.C. & Wolfman, A. 2003. K-ras regulates the steady-state expression of matrix metalloproteinase 2 in fibroblasts. Journal of Biological Chemistry 278(34): 31871-31878. https://doi.org/10.1074/jbc.m301931200

Malmir, S., Ebrahimi, A. & Mahjoubi, F. 2020. Effect of ginger extracts on colorectal cancer HCT-116 cell line in the expression of MMP-2 and Kras. Gene Reports 21: 100824.

Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H.P. & Ron, D. 2004. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes & Dev. 18: 3066-3077.

Orlic-Milacic, M. 2023. Reactome: TP53 stimulates transcription of TNFRSF10A, TNFRSF10B,TNFRSF10C and TNFRSF10D genes. Reactome Pathway Database.https://reactome.org/content/detail/R-HSA-5633441 Assessed 25 February 2023.

Mashhadi, N.S., Ghiasvand, R., Askari, G., Hariri, M., Darvishi, L. & Mofid, M.R. 2013. Anti- oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. Int. J. Prev. Med. 4(Suppl 1): S36-S42.

Nile, S.H. & Park, S.W. 2015. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products 70: 238-244. 

Qi, L.W., Zhang, Z., Zhang, C.F., Anderson, S., Liu, Q., Yuan, C.S. & Wang, C.Z. 2015. Anti-colon cancer effects of 6-Shogaol through G2/M cell cycle arrest by p53/p21-cdc2/cdc25A crosstalk. Am. J. Chin. Med. 43(4): 743-756.

Radhakrishnan, E.K., Bava, S.V., Narayanan, S.S., Nath, L.R., Thulasidasan, A.K., Soniya, E.V. & Anto, R.J. 2014. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS ONE 9(8): e104401. https://doi.org/10.1371/journal.pone.0104401

Sarmoko, S., Solihati, I., Setyono, J., Ekowati, H. & Fadlan, A. 2020. Zingiber officinale var. Rubrum extract increases the cytotoxic activity of 5-fluorouracil in colon adenocarcinoma WIDR cells. Indonesian Journal of Pharmacy 31(4): 266-272. https://doi.org/10.22146/ijp.859

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T. & Ramage, D. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13(11): 2498-2504.

Sun, Y., Liu, W.Z., Liu, T., Feng, X., Yang, N. & Zhou, H.F. 2015. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35(6): 600-604. doi: 10.3109/10799893.2015.1030412.

Tunçer, S., Solel, E. & Banerjee, S. 2020. Extensive unfolded protein response stimulation in colon cancer cells enhances VEGF expression and secretion. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi 7: 336-350.

World Health Organization. 2022. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer Accessed 12 February 2023.

Woźniak, M., Makuch, S., Winograd, K., Wiśniewski, J., Ziółkowski, P. & Agrawal, S. 2020.  6-Shogaol enhances the anticancer effect of 5-fluorouracil, oxaliplatin, and irinotecan via increase of apoptosis and autophagy in colon cancer cells in hypoxic/aglycemic conditions. BMC Complement. Med. Ther. 20(1): 141.

Yadav, R.K., Chae, S.W., Kim, H.R. & Chae, H.J. 2014. Endoplasmic reticulum stress and cancer. J. Cancer Prev. 19(2): 75-88. doi: 10.15430/JCP.2014.19.2.75

Yoshimi, N., Wang, A., Morishita, Y., Tanaka, T., Sugie, S., Kawai, K., Yamahara, J. & Mori, H. 1992. Modifying effects of fungal and herb metabolites on azoxymethane-induced intestinal carcinogenesis in rats. Jpn J. Cancer Res. 83(12): 1273-1278.

Zick, S.M., Turgeon, D.K., Vareed, S.K., Ruffin, M.T., Litzinger, A.J., Wright, B.D., Alrawi, S., Normolle, D.P., Djuric, Z. & Brenner, D.E. 2011. Phase II study of the effects of ginger root extract on eicosanoids in colon mucosa in people at normal risk for colorectal cancer. Cancer Prev. Res. (Phila) 4(11): 1929-1937.

 

 *Corresponding author; email: kkusmardis@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous