Sains
Malaysiana 52(12)(2023): 3523-3532
http://doi.org/10.17576/jsm-2023-5212-14
Differentially Expressed Genes (DEGs)
Analysis Indicating 6-Shogaol Anticancer Activity against
HCT-116 Cells Performed Primarily by Affecting Genes in Common (shared-DEGs) of
Apoptotic and p53
Signaling Pathways
(Analisis Pengekspresan Gen Berbeza (DEGs) Menunjukkan Aktiviti Antikanser 6-Shogaol
terhadap Sel HCT-116 Dijalankan Terutamanya
dengan Mempengaruhi Gen Bersama (shared-DEGs) Tapak Jalan Pengisyaratan Apoptotik dan p53)
ARYO TEDJO1,2,3, DIMAS R NOOR4,
KUSMARDI2,4.5,6,*,
NUR AYU RAMADANTI3 & AMELIA KASSIM7
1Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
2Drug Development Research Center, Indonesian Medical
Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
3Master’s Program in Biomedical Sciences, Faculty of
Medicine, Universitas Indonesia, DKI Jakarta, Depok,
Indonesia
4Human Cancer Research Center, Indonesian Medical
Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
5Department of Pathology Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
6Doctoral Program in Biomedical Sciences, Faculty of
Medicine, Universitas Indonesia, DKI Jakarta, Depok,
Indonesia
7Faculty of Information Science and Technology,
Multimedia University, 75450 Bukit Beruang, Melaka,
Malaysia
Received: 8 March 2023/Accepted: 11 December 2023
Abstract
Ginger
have strong anti-inflammatory and antioxidant properties that can inhibit
growth and trigger apoptosis of colorectal cancer cells. Dried ginger
containing the main bioactive compound 6-shogaol is widely used for practical
reasons in storage. In this study, the mechanism of 6-shogaol apoptosis was
tried to be explained by looking at the Differentially Expressed Genes (DEGs)
changes in HCT-116 cells. The results of DEGs analysis on Gene Expression
Omnibus (GEO) data which contained gene expression data for the HCT-116 cell
group treated with 6-shogaol and the control group showed that there were 142
DEGs of the apoptotic pathway with 9 (nine) of them being share-DEGs of the
apoptotic pathway with other pathways related to apoptosis such as MAPK
signaling pathway, p53 signalling pathway, and protein processing in
endoplasmic reticulum pathways. Based on the regulation of the 9 share-DEGs, it
was also explained that the apoptotic activity of 6-shogaol mainly occurs
through the p53 signalling pathway which involves up-regulation of BAX, BBC3,
GADD45G, and TNFRSF10A.
Keywords:
Apoptosis; Differentially
Expressed Genes; HCT-116; p53 signaling pathway; 6-shogaol
Abstrak
Halia mempunyai sifat anti-radang yang kuat dan antioksidan yang boleh menghalang pertumbuhan serta mencetuskan apoptosis sel kanser kolorektal. Halia kering yang mengandungi sebatian bioaktif utama 6-shogaol digunakan secara meluas atas alasan praktikal dalam penyimpanan. Dalam kajian ini, mekanisme apoptosis 6-shogaol cuba diterangkan dengan melihat perubahan Pengekspresan Gen Berbeza (DEG) dalam sel HCT-116. Hasil analisis DEG pada data Pengekspresan Gen Serbaneka (GEO)
yang mengandungi data pengekspresan gen bagi kumpulan sel HCT-116 yang dirawat dengan 6-shogaol dan kumpulan kawalan menunjukkan bahawa terdapat 142 DEG dalam tapak jalan apoptosis dengan 9 daripadanya adalah DEG bersama dalam tapak jalan apoptosis dengan tapak jalan lain yang berkaitan seperti tapak jalan pengisyaratan MAPK, tapak jalan pengisyaratan p53 serta tapak jalan pemprosesan protein dalam retikulum endoplasma. Berdasarkan pengawalan 9 DEG bersama itu juga diterangkan bahawa aktiviti apoptosis 6-shogaol utamanya berlaku melalui tapak jalan pengisyaratan p53 yang melibatkan peningkatan pengawalan atas BAX, BBC3,
GADD45G dan TNFRSF10A.
Kata kunci: Apoptosis; HCT-116; Pengekspresan Gen Berbeza; tapak jalan pengisyaratan p53;
6-shogaol
REFERENCES
Barrett, T.,
Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M.,
Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee,
H., Zhang, N., Robertson, C.L., Serova, N., Davis, S. & Soboleva, A. 2012.
NCBI GEO: Archive
for functional genomics data sets - update. Nucleic Acids Research 41(Database Issue): D991-D995. https://doi.org/10.1093/nar/gks1193
Bawadood,
A.S.,
Fahad, A.A., Ali, M.E. & Ahmed, M.A. 2021. Abstract 313: Synergistic interaction between gingerol,
shogaol and paradol with platinum-based chemotherapeutic drugs against naïve
and resistant breast cancer cells. Cancer Research 81(13_Supplement):
313. https://doi.org/10.1158/1538-7445.am2021-313
Bischoff-Kont,
I. & Fürst, R. 2021. Benefits of ginger and its
constituent 6-Shogaol in inhibiting inflammatory processes. Pharmaceuticals 14(6):
571. https://doi.org/10.3390/ph14060571
Chen,
H., Fu, J., Chen, H., Hu, Y., Soroka, D.N., Prigge, J.R., Schmidt, E.E., Yan,
F., Major, M.B., Chen, X. & Sang, S. 2014. Ginger
compound [6]-shogaol and its cysteine-conjugated metabolite (M2) activate Nrf2
in colon epithelial cells in vitro and in vivo. Chem Res
Toxicol. 27(9): 1575-1585. doi: 10.1021/tx500211x
Citronberg,
J., Bostick, R., Ahearn, T., Turgeon, D.K., Ruffin, M.T., Djuric, Z., Sen, A., Brenner, D.E. & Zick, S.M. 2013. Effects of ginger supplementation on cell-cycle biomarkers in the
normal-appearing colonic mucosa of patients at increased risk for colorectal
cancer: Results from a pilot, randomized, and controlled trial. Cancer
Prevention Research 6(4): 271-281. https://doi.org/10.1158/1940-6207.capr-12-0327
Clarke,
P.A.,
Roe, T., Swabey, K., Hobbs, S.M., McAndrew, C., Tomlin, K., Westwood, I., Burke, R., van Montfort, R. & Workman, P. 2019. Dissecting mechanisms of resistance
to targeted drug combination therapy in human colorectal cancer. Oncogene 38(25):
5076-5090. https://doi.org/10.1038/s41388-019-0780-z
De, S., Paul, S., Manna, A., Majumder, C., Pal, K., Casarcia, N., Mondal, A., Banerjee, S., Nelson, V.K., Ghosh, S., Hazra, J., Bhattacharjee, A., Mandal, S.C., Pal, M. & Bishayee, A. 2023. Phenolic phytochemicals for
prevention and treatment of colorectal cancer: A critical evaluation of in vivo studies. Cancers 15(3): 993.
https://doi.org/10.3390/cancers15030993
Demsar,
J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina, M.,
Polajnar, M., Toplak, M., Staric, A., Stajdohar, M., Umek, L., Zagar, L.,
Zbontar, J., Zitnik, M. & Zupan, B. 2013. Orange: Data mining toolbox in python. Journal of Machine Learning
Research 14: 2349-2353.
El-Sayed,
W.M., Abdel-Rasol, M.A., El-Beih, N.M. & Yahya, S.S. 2022. The antitumor activity
of ginger against colorectal cancer induced by dimethylhydrazinein rats. Anti-Cancer
Agents in Medicinal Chemistry 22(8): 1601-1610.
Goel,
H.L. & Mercurio, A.M.
2013. VEGF targets the tumour cell. Nat. Rev. Cancer 13(12): 871-882. doi: 10.1038/nrc3627
Habib,
S.H., Makpol, S.,
Abdul Hamid, N.A., Das, S., Ngah, W.Z. & Yusof, Y.A. 2008. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory
effects on ethionine-induced hepatoma rats. Clinics 63(6): 807-813.
Hu, S.M., Yao, X.H., Hao, Y.H., Pan, A.H. & Zhou, X.W. 2020. 8‑gingerol regulates colorectal
cancer cell proliferation and migration through the EGFR/stat/erk pathway. International Journal of Oncology 56(1): 390-397. https://doi.org/10.3892/ijo.2019.4934
Kanehisa,
M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. 2023. KEGG for taxonomy-based analysis of
pathways and genomes. Nucleic Acids Res. 51(D1): D587-D592. doi: 10.1093/nar/gkac963
Lee, S.H., Cekanova,
M. & Baek, S.J. 2008. Multiple mechanisms are involved in
6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer
cells. Mol. Carcinog. 47: 197-208.
Li, T., Su, L., Lei, Y., Liu, X., Zhang, Y. & Liu, X. 2015. DDIT3
and KAT2A proteins regulate TNFRSF10A and TNFRSF10B expression in endoplasmic
reticulum stress-mediated apoptosis in human lung cancer cells. J. Biol. Chem. 290(17): 11108-11118.
Liao, J., Wolfman, J.C. & Wolfman, A. 2003.
K-ras regulates the steady-state expression of matrix metalloproteinase 2 in
fibroblasts. Journal of Biological Chemistry 278(34): 31871-31878. https://doi.org/10.1074/jbc.m301931200
Malmir, S., Ebrahimi, A. & Mahjoubi, F. 2020.
Effect of ginger extracts on colorectal cancer HCT-116 cell line in the
expression of MMP-2 and Kras. Gene Reports 21: 100824.
Marciniak, S.J., Yun,
C.Y., Oyadomari, S., Novoa,
I., Zhang, Y., Jungreis, R., Nagata, K., Harding,
H.P. & Ron, D. 2004. CHOP induces death by promoting protein synthesis and
oxidation in the stressed endoplasmic reticulum. Genes & Dev. 18:
3066-3077.
Orlic-Milacic, M. 2023. Reactome: TP53 stimulates transcription of
TNFRSF10A, TNFRSF10B,TNFRSF10C and TNFRSF10D genes. Reactome Pathway
Database.https://reactome.org/content/detail/R-HSA-5633441 Assessed 25
February 2023.
Mashhadi, N.S., Ghiasvand, R., Askari, G., Hariri, M., Darvishi, L. & Mofid, M.R. 2013.
Anti- oxidative and anti-inflammatory effects
of ginger in health and physical activity: Review of current
evidence. Int. J. Prev. Med. 4(Suppl 1): S36-S42.
Nile, S.H. & Park, S.W. 2015. Chromatographic
analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory
activities of ginger extracts and its reference compounds. Industrial Crops
and Products 70: 238-244.
Qi, L.W., Zhang, Z., Zhang, C.F., Anderson, S., Liu, Q., Yuan, C.S. & Wang, C.Z. 2015.
Anti-colon cancer effects of 6-Shogaol through G2/M cell
cycle arrest by p53/p21-cdc2/cdc25A crosstalk. Am. J. Chin. Med. 43(4): 743-756.
Radhakrishnan, E.K., Bava, S.V., Narayanan, S.S.,
Nath, L.R., Thulasidasan, A.K., Soniya, E.V. & Anto, R.J. 2014.
[6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced
proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PLoS
ONE 9(8): e104401. https://doi.org/10.1371/journal.pone.0104401
Sarmoko, S., Solihati, I., Setyono, J., Ekowati, H. & Fadlan, A. 2020. Zingiber
officinale var. Rubrum extract increases the cytotoxic
activity of 5-fluorouracil in colon adenocarcinoma WIDR cells. Indonesian
Journal of Pharmacy 31(4): 266-272. https://doi.org/10.22146/ijp.859
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T. & Ramage, D. 2003.
Cytoscape: A software environment for integrated
models of biomolecular interaction networks. Genome Research 13(11): 2498-2504.
Sun, Y., Liu, W.Z., Liu, T., Feng, X., Yang, N. & Zhou, H.F. 2015.
Signaling pathway of MAPK/ERK in cell proliferation, differentiation,
migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35(6): 600-604. doi:
10.3109/10799893.2015.1030412.
Tunçer, S., Solel, E. & Banerjee, S. 2020.
Extensive unfolded protein response stimulation in colon cancer cells enhances
VEGF expression and secretion. Bilecik Şeyh Edebali Üniversitesi Fen
Bilimleri Dergisi 7: 336-350.
World Health Organization. 2022. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer Accessed 12
February 2023.
Woźniak, M., Makuch, S., Winograd, K., Wiśniewski, J.,
Ziółkowski, P. & Agrawal, S. 2020. 6-Shogaol enhances the anticancer effect of
5-fluorouracil, oxaliplatin, and irinotecan via increase of apoptosis and
autophagy in colon cancer cells in hypoxic/aglycemic conditions. BMC
Complement. Med. Ther. 20(1): 141.
Yadav, R.K., Chae, S.W., Kim, H.R. & Chae, H.J. 2014.
Endoplasmic reticulum stress and cancer. J. Cancer Prev. 19(2): 75-88. doi: 10.15430/JCP.2014.19.2.75
Yoshimi, N., Wang, A., Morishita, Y., Tanaka, T., Sugie, S., Kawai, K.,
Yamahara, J. & Mori, H. 1992. Modifying
effects of fungal and herb metabolites on azoxymethane-induced intestinal
carcinogenesis in rats. Jpn J. Cancer Res. 83(12): 1273-1278.
Zick, S.M., Turgeon, D.K., Vareed, S.K., Ruffin, M.T., Litzinger, A.J.,
Wright, B.D., Alrawi, S., Normolle, D.P., Djuric, Z. & Brenner, D.E. 2011.
Phase II study of the effects of ginger root extract on eicosanoids in colon
mucosa in people at normal risk for colorectal cancer. Cancer Prev. Res. (Phila) 4(11): 1929-1937.
*Corresponding author;
email: kkusmardis@gmail.com
|